High Energy Physics - Phenomenology
[Submitted on 29 Mar 2016 (v1), last revised 1 Jul 2016 (this version, v2)]
Title:Signatures of sneutrino dark matter in an extension of the CMSSM
View PDFAbstract:Current data (LHC direct searches, Higgs mass, dark matter-related bounds) severely affect the constrained minimal SUSY standard model (CMSSM) with neutralinos as dark matter candidates. But the evidence for neutrino masses coming from oscillations requires extending the SM with at least right-handed neutrinos with a Dirac mass term. In turn, this implies extending the CMSSM with right-handed sneutrino superpartners, a scenario we dub $\tilde\nu$CMSSM. These additional states constitute alternative dark matter candidates of the superWIMP type, produced via the decay of the long-lived next-to-lightest SUSY particle (NLSP). Here we consider the interesting and likely case where the NLSP is a $\tilde{\tau}$: despite the modest extension with respect to the CMSSM this scenario has the distinctive signatures of heavy, stable charged particles. After taking into account the role played by neutrino mass bounds and the specific cosmological bounds from the big bang nucleosynthesis in selecting the viable parameter space, we discuss the excellent discovery prospects for this model at the future runs of the LHC. We show that it is possible to probe $\tilde{\tau}$ masses up to 600 GeV at the 14 TeV LHC with $\mathcal{L} = 1100$ fb$^{-1}$ when one considers a pair production of staus with two or more hard jets through all SUSY processes. We also show the complementary discovery prospects from a direct $\tilde{\tau}$ pair production, as well as at the new experiment MoEDAL.
Submission history
From: Shankha Banerjee [view email][v1] Tue, 29 Mar 2016 16:30:26 UTC (675 KB)
[v2] Fri, 1 Jul 2016 19:14:43 UTC (566 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.