Nuclear Theory
[Submitted on 25 Apr 2016 (v1), last revised 7 Jun 2016 (this version, v2)]
Title:Distribution amplitudes of radially-excited pi- and K-mesons
View PDFAbstract:A symmetry-preserving truncation of the two-body bound-state problem in relativistic quantum field theory is used to compute the leading-twist parton distribution amplitudes (PDAs) for the first radial excitations of the $\pi$- and $K$-mesons. In common with ground states in these channels, the PDAs are found to be dilated with respect to the relevant conformal-limit form and skewed toward the heavier valence-quark in asymmetric systems. In addition, the PDAs of radially-excited pseudoscalar mesons are not positive definite, owing to the fact that dynamical chiral symmetry breaking (DCSB) forces the leptonic decay constant of such states to vanish in the chiral limit. These results highlight that DCSB is expressed visibly in every pseudoscalar meson constituted from light-quarks. Hence, so long as its impact is empirically evident in the pseudoscalar members of a given spectrum level, it is unlikely that chiral symmetry is restored in any of the hadrons that populate this level.
Submission history
From: Craig Roberts [view email][v1] Mon, 25 Apr 2016 20:00:06 UTC (275 KB)
[v2] Tue, 7 Jun 2016 15:24:07 UTC (275 KB)
Current browse context:
nucl-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.