High Energy Physics - Theory
[Submitted on 6 May 2016 (v1), last revised 7 Feb 2017 (this version, v3)]
Title:Unitarity and microscopic acausality in a nonlocal theory
View PDFAbstract:We consider unitarity and causality in a higher-derivative theory of infinite order, where propagators fall off more quickly in the ultraviolet due to the presence of a transcendental entire function of the momentum. Like Lee-Wick theories, these field theories might provide new avenues for addressing the hierarchy problem; unlike Lee-Wick theories, tree-level propagators do not have additional poles corresponding to unobserved particles with unusual properties. We consider microscopic acausality in these nonlocal theories. The acausal ordering of production and decay vertices for ordinary resonant particles may provide a phenomenologically distinct signature for these models.
Submission history
From: Christopher D. Carone [view email][v1] Fri, 6 May 2016 18:44:25 UTC (120 KB)
[v2] Fri, 13 May 2016 21:27:20 UTC (120 KB)
[v3] Tue, 7 Feb 2017 16:47:34 UTC (341 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.