Mathematics > Probability
[Submitted on 11 May 2016]
Title:The velocity of 1D Mott variable range hopping with external field
View PDFAbstract:Mott variable range hopping is a fundamental mechanism for low-temperature electron conduction in disordered solids in the regime of Anderson localization. In a mean field approximation, it reduces to a random walk (shortly, Mott random walk) on a random marked point process with possible long-range jumps. We consider here the one-dimensional Mott random walk and we add an external field (or a bias to the right). We show that the bias makes the walk transient, and investigate its linear speed. Our main results are conditions for ballisticity (positive linear speed) and for sub-ballisticity (zero linear speed), and the existence in the ballistic regime of an invariant distribution for the environment viewed from the walker, which is mutually absolutely continuous with respect to the original law of the environment. If the point process is a renewal process, the aforementioned conditions result in a sharp criterion for ballisticity. Interestingly, the speed is not always continuous as a function of the bias.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.