Nuclear Experiment
[Submitted on 13 Jun 2016]
Title:Cumulants of Net-Proton, Net-Kaon and Net-Charge Multiplicity Distributions in Au+Au Collisions at RHIC BES Energies from UrQMD Model
View PDFAbstract:Fluctuations of conserved quantities are sensitive observables to probe the signature of QCD phase transition and critical point in heavy-ion collisions. With the UrQMD model, we have studied the centrality and energy dependence of various order cumulants and cumulant ratios (up to fourth order) of net-proton,net-charge and net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{NN}}$= 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV. The model results show that the production mechanism of the particles and anti-particles have significant impacts on the cumulants of net-particles multiplicity distributions and show strong energy dependence. We also made comparisons between model calculations and experimental data measured in the first phase of the beam energy scan (BES) program by the STAR experiment at RHIC. The comparisons indicate that the baryon conservation effect strongly suppress the cumulants of net-proton distributions at low energies and the non-monotonic energy dependence for the net-proton {\KV} at the most central Au+Au collisions measured by the STAR experiment can not be described by the UrQMD model. Since there has no physics of QCD phase transition and QCD critical point implemented in the UrQMD, the model results provide us baselines and qualitative estimates about the non-critical background contributions to the fluctuations observables in heavy-ion collisions.
Current browse context:
nucl-ex
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.