High Energy Physics - Phenomenology
[Submitted on 14 Jun 2016]
Title:Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics
View PDFAbstract:We studied chiral phase transitions in the Tsallis nonextensive statistics which has two parameters, the temperature $T$ and entropic parameter $q$. The linear sigma model was used in this study. The critical temperature, condensate, masses, and energy density were calculated under the massless free particle approximation. The critical temperature decreases as $q$ increases. The condensate at $q>1$ is smaller than that at $q=1$. The sigma mass at $q>1$ is heavier than the mass at $q=1$ at high temperature, while the sigma mass at $q>1$ is lighter than the mass at $q=1$ at low temperature. The pion mass at $q>1$ is heavier than the mass at $q=1$. The energy density increases remarkably as $q$ increases. The $q$ dependence in the case of the $q$-expectation value is weaker than that in the case of the conventional expectation value with a Tsallis distribution. The parameter $q$ should be smaller than $4/3$ from energetic point of view. The validity of the Tsallis statistics can be determined by the difference in $q$ of the restriction for $5/4 < q < 4/3$ when the interaction is weak, because the parameter $q$ is smaller than $5/4$ in the case of the conventional expectation value with a Tsallis distribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.