High Energy Physics - Phenomenology
[Submitted on 15 Jun 2016]
Title:Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography
View PDFAbstract:Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity -- supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. The breaking of conformal symmetry determines a unique quark-confining light-front potential for light hadrons including spin-spin interactions in agreement with the soft-wall AdS/QCD approach and light-front holography. The mass-squared of the light hadrons can be expressed as a frame-independent decomposition of contributions from the constituent kinetic energy, the confinement potential, and spin-spin contributions. The mass of the pion eigenstate vanishes in the chiral limit. Only one mass parameter appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the mass parameter of the pQCD running coupling. The result is an effective coupling defined at all momenta. The matching of the high and low momentum-transfer regimes determines a scale $Q_0$ which sets the interface between perturbative and nonperturbative hadron dynamics. as well as the factorization scale for structure functions and distribution amplitudes. This procedure, in combination with the scheme-independent PMC procedure for setting renormalization scales, can greatly improve the precision of QCD predictions.
Submission history
From: Stanley J. Brodsky [view email][v1] Wed, 15 Jun 2016 04:38:36 UTC (3,317 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.