High Energy Physics - Theory
[Submitted on 19 Jun 2016 (v1), last revised 30 Oct 2016 (this version, v2)]
Title:Explicit BCJ numerators of nonlinear sigma model
View PDFAbstract:In this paper, we investigate the color-kinematics duality in nonlinear sigma model (NLSM). We present explicit polynomial expressions for the kinematic numerators (BCJ numerators). The calculation is done separately in two parametrization schemes of the theory using Kawai-Lewellen-Tye relation inspired technique, both lead to polynomial numerators. We summarize the calculation in each case into a set of rules that generates BCJ numerators for all multilplicities. In Cayley parametrization we find the numerator is described by a particularly simple formula solely in terms of momentum kernel.
Submission history
From: Chih-Hao Fu [view email][v1] Sun, 19 Jun 2016 09:01:20 UTC (381 KB)
[v2] Sun, 30 Oct 2016 11:52:48 UTC (380 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.