High Energy Physics - Phenomenology
[Submitted on 30 Jun 2016]
Title:The Electroweak Sudakov approximation in SHERPA
View PDFAbstract:As experimental particle physics becomes more and more precise, it is becoming increasingly important for Monte Carlo simulations to improve the precision of their predictions. In terms of the hard matrix element, this means calculating to a higher order in perturbation theory. To be consistent this requires both NNLO QCD corrections and NLO EW corrections to be included. There are also interference effects between these processes that are not simple to handle consistently. For a broad description of the behaviour of NLO EW corrections at high energies, the Sudakov logarithmic approach provides a good approximation, and is much less computationally expensive than the full calculation. The implementation of EW Sudakov logarithms within the SHERPA program are outlined here along with some initial results. As well as this, an overview of the status of full NLO EW computations with SHERPA is presented.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.