High Energy Physics - Phenomenology
[Submitted on 30 Jun 2016 (v1), last revised 21 Sep 2016 (this version, v2)]
Title:Viability of exact tri-bimaximal, golden-ratio and bimaximal mixing patterns and renormalization-group running effects
View PDFAbstract:In light of the latest neutrino oscillation data, we examine whether the leptonic flavor mixing matrix can take on an exact form of tri-bimaximal (TBM), golden-ratio (GR) or bimaximal (BM) mixing pattern at a superhigh-energy scale, where such a mixing pattern could be realized by a flavor symmetry, and become compatible with experimental data at the low-energy scale. Within the framework of the Minimal Supersymmetric Standard Model (MSSM), the only hope for realizing such a possibility is to count on the corrections from the renomalization-group (RG) running. In this work we focus on these radiative corrections, and fully explore the allowed parameter space for each of these mixing patterns. We find that when the upper bound on the sum of neutrino masses $\Sigma^{}_\nu \equiv m^{}_1 + m^{}_2 + m^{}_3 < 0.23~\text{eV}$ at the $95\%$ confidence level from Planck 2015 is taken into account, none of these mixing patterns can be identified as the leptonic mixing matrix below the seesaw threshold. If this cosmological upper bound on the sum of neutrino masses were relaxed, the TBM and GR mixing patterns would still be compatible with the latest neutrino oscillation data at the $3\sigma$ level, but not at the $1\sigma$ level. Even in this case, no such a possibility exists for the BM mixing.
Submission history
From: Jue Zhang [view email][v1] Thu, 30 Jun 2016 17:58:56 UTC (372 KB)
[v2] Wed, 21 Sep 2016 16:32:59 UTC (372 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.