Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 1 Oct 2016]
Title:Thermal Inflation with a Thermal Waterfall Scalar Field Coupled to a Light Spectator Scalar Field
View PDFAbstract:This thesis begins with an introduction to the state of the art of modern Cosmology. The field of Particle Cosmology is then introduced and explored, in particular with regard to the study of cosmological inflation. We then introduce a new model of Thermal Inflation, in which the mass of the thermal waterfall field responsible for the inflation is dependent on a light spectator scalar field. The model contains a variety of free parameters, two of which control the power of the coupling term and the non-renormalizable term. We use the $\delta N$ formalism to investigate the "end of inflation" and modulated decay scenarios in turn to see whether they are able to produce the dominant contribution to the primordial curvature perturbation $\zeta$. We constrain the model and then explore the parameter space. We explore key observational signatures, such as non-Gaussianity, the scalar spectral index and the running of the scalar spectral index. We find that for some regions of the parameter space, the ability of the model to produce the dominant contribution to $\zeta$ is excluded. However, for other regions of the parameter space, we find that the model yields a sharp prediction for a variety of parameters within the model.
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.