High Energy Physics - Phenomenology
[Submitted on 27 Oct 2016 (v1), last revised 10 Apr 2017 (this version, v2)]
Title:LHC vector resonance searches in the $t\bar{t} Z$ final state
View PDFAbstract:LHC searches for BSM resonances in $l^+ l^-, \, jj, \, t\bar{t}, \gamma \gamma$ and $VV$ final states have so far not resulted in discovery of new physics. Current results set lower limits on mass scales of new physics resonances well into the $\mathcal{O}(1)$ TeV range, assuming that the new resonance decays dominantly to a pair of Standard Model particles. While the SM pair searches are a vital probe of possible new physics, it is important to re-examine the scope of new physics scenarios probed with such final states. Scenarios where new resonances decay dominantly to final states other than SM pairs, even though well theoretically motivated, lie beyond the scope of SM pair searches. In this paper we argue that LHC searches for (vector) resonances beyond two particle final states would be useful complementary probes of new physics scenarios. As an example, we consider a class of composite Higgs models, and identify specific model parameter points where the color singlet, electrically neutral vector resonance $\rho_0$ decays dominantly not to a pair of SM particles, but to a fermionic top partner $T_{f1}$ and a top quark, with $T_{f1} \rightarrow tZ$. We show that dominant decays of $\rho_0 \rightarrow T_{f1} t$ in the context of Composite Higgs models are possible even when the decay channel to a pair of $T_{f1}$ is kinematically open. Our analysis deals with scenarios where both $m_\rho$ and $m_{T_{f1}}$ are of $\mathcal{O}(1)$ TeV, leading to highly boosted $t\bar{t}Z$ final state topologies. We show that the particular composite Higgs scenario we consider is discoverable at the LHC13 with as little as 30 fb$^{-1}$, while being allowed by other existing experimental constraints.
Submission history
From: Thomas Flacke [view email][v1] Thu, 27 Oct 2016 14:44:00 UTC (2,524 KB)
[v2] Mon, 10 Apr 2017 09:33:16 UTC (2,525 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.