Nonlinear Sciences > Chaotic Dynamics
[Submitted on 1 Mar 2017 (v1), last revised 7 Apr 2017 (this version, v2)]
Title:The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map
View PDFAbstract:In this work, we have characterized changes in the dynamics of a two-dimensional relativistic standard map in the presence of dissipation and specially when it is submitted to thermal effects modeled by a Gaussian noise reservoir. By the addition of thermal noise in the dissipative relativistic standard map (DRSM) it is possible to suppress typical stable periodic structures (SPSs) embedded in the chaotic domains of parameter space for large enough temperature strengths. Smaller SPSs are first affected by thermal effects, starting from their borders, as a function of temperature. To estimate the necessary temperature strength capable to destroy those SPSs we use the largest Lyapunov exponent to obtain the critical temperature ($T_C$) diagrams. For critical temperatures the chaotic behavior takes place with the suppression of periodic motion, although, the temperature strengths considered in this work are not so large to convert the deterministic features of the underlying system into a stochastic ones.
Submission history
From: Cesar Manchein [view email][v1] Wed, 1 Mar 2017 17:48:45 UTC (2,578 KB)
[v2] Fri, 7 Apr 2017 13:20:19 UTC (2,579 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.