Nonlinear Sciences > Chaotic Dynamics
[Submitted on 4 Apr 2017]
Title:Discontinuity Induced Hopf and Neimark-Sacker Bifurcations in a Memristive Murali-Lakshmanan-Chua Circuit
View PDFAbstract:We report using Clarke's concept of generalised differential and a modification of Floquet theory to non-smooth oscillations, the occurrence of discontinuity induced Hopf bifurcations and Neimark-Sacker bifurcations leading to quasiperiodic attractors in a memristive Murali-Lakshmanan-Chua (memristive MLC) circuit. The above bifurcations arise because of the fact that a memristive MLC circuit is basically a nonsmooth system by virtue of having a memristive element as its nonlinearity. The switching and modulating properties of the memristor which we have considered endow the circuit with two discontinuity boundaries and multiple equilibrium points as well. As the Jacobian matrices about these equilibrium points are non-invertible, they are non-hyperbolic, some of these admit local bifurcations as well. Consequently when these equilibrium points are perturbed, they lose their stability giving rise to quasiperiodic orbits. The numerical simulations carried out by incorporating proper discontinuity mappings (DMs), such as the Poincaré discontinuity map (PDM) and zero time discontinuity map (ZDM), are found to agree well with experimental observations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.