Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 8 Aug 2017 (v1), last revised 30 Dec 2019 (this version, v3)]
Title:Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation
View PDFAbstract:The modified Camassa-Holm (mCH) equation is a bi-Hamiltonian system possessing $N$-peakon weak solutions, for all $N\geq 1$, in the setting of an integral formulation which is used in analysis for studying local well-posedness, global existence, and wave breaking for non-peakon solutions. Unlike the original Camassa-Holm equation, the two Hamiltonians of the mCH equation do not reduce to conserved integrals (constants of motion) for $2$-peakon weak solutions. This perplexing situation is addressed here by finding an explicit conserved integral for $N$-peakon weak solutions for all $N\geq 2$. When $N$ is even, the conserved integral is shown to provide a Hamiltonian structure with the use of a natural Poisson bracket that arises from reduction of one of the Hamiltonian structures of the mCH equation. But when $N$ is odd, the Hamiltonian equations of motion arising from the conserved integral using this Poisson bracket are found to differ from the dynamical equations for the mCH $N$-peakon weak solutions. Moreover, the lack of conservation of the two Hamiltonians of the mCH equation when they are reduced to $2$-peakon weak solutions is shown to extend to $N$-peakon weak solutions for all $N\geq 2$. The connection between this loss of integrability structure and related work by Chang and Szmigielski on the Lax pair for the mCH equation is discussed.
Submission history
From: Stephen C. Anco [view email][v1] Tue, 8 Aug 2017 15:27:50 UTC (15 KB)
[v2] Wed, 31 Jan 2018 02:51:54 UTC (16 KB)
[v3] Mon, 30 Dec 2019 16:36:35 UTC (16 KB)
Current browse context:
nlin.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.