Quantitative Biology > Populations and Evolution
[Submitted on 29 Sep 2017]
Title:Duality between cooperation and defection in the presence of tit-for-tat in replicator dynamics
View PDFAbstract:The prisoner's dilemma describes a conflict between a pair of players, in which defection is a dominant strategy whereas cooperation is collectively optimal. The iterated version of the dilemma has been extensively studied to understand the emergence of cooperation. In the evolutionary context, the iterated prisoner's dilemma is often combined with population dynamics, in which a more successful strategy replicates itself with a higher growth rate. Here, we investigate the replicator dynamics of three representative strategies, i.e., unconditional cooperation, unconditional defection, and tit-for-tat, which prescribes reciprocal cooperation by mimicking the opponent's previous move. Our finding is that the dynamics is self-dual in the sense that it remains invariant when we apply time reversal and exchange the fractions of unconditional cooperators and defectors in the population. The duality implies that the fractions can be equalized by tit-for-tat players, although unconditional cooperation is still dominated by defection. Furthermore, we find that mutation among the strategies breaks the exact duality in such a way that cooperation is more favored than defection, as long as the cost-to-benefit ratio of cooperation is small.
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.