Mathematics > Combinatorics
[Submitted on 31 Dec 2017 (v1), last revised 15 Aug 2019 (this version, v3)]
Title:Boolean Dimension, Components and Blocks
View PDFAbstract:We investigate the behavior of Boolean dimension with respect to components and blocks. To put our results in context, we note that for Dushnik-Miller dimension, we have that if $\dim(C)\le d$ for every component $C$ of a poset $P$, then $\dim(P)\le \max\{2,d\}$; also if $\dim(B)\le d$ for every block $B$ of a poset $P$, then $\dim(P)\le d+2$. By way of constrast, local dimension is well behaved with respect to components, but not for blocks: if $\text{ldim}(C)\le d$ for every component $C$ of a poset $P$, then $\text{ldim}(P)\le d+2$; however, for every $d\ge 4$, there exists a poset $P$ with $\text{ldim}(P)=d$ and $\dim(B)\le 3$ for every block $B$ of $P$. In this paper we show that Boolean dimension behaves like Dushnik-Miller dimension with respect to both components and blocks: if $\text{bdim}(C)\le d$ for every component $C$ of $P$, then $\text{bdim}(P)\le 2+d+4\cdot2^d$; also if $\text{bdim}(B)\le d$ for every block of $P$, then $\text{bdim}(P)\le 19+d+18\cdot 2^d$.
Submission history
From: Tamás Mészáros [view email][v1] Sun, 31 Dec 2017 14:30:16 UTC (13 KB)
[v2] Thu, 31 Jan 2019 15:09:30 UTC (15 KB)
[v3] Thu, 15 Aug 2019 14:22:08 UTC (15 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.