Mathematics > Numerical Analysis
[Submitted on 31 Dec 2017]
Title:Stable rank one matrix completion is solved by two rounds of semidefinite programming relaxation
View PDFAbstract:This paper studies the problem of deterministic rank-one matrix completion. It is known that the simplest semidefinite programming relaxation, involving minimization of the nuclear norm, does not in general return the solution for this problem. In this paper, we show that in every instance where the problem has a unique solution, one can provably recover the original matrix through two rounds of semidefinite programming relaxation with minimization of the trace norm. We further show that the solution of the proposed semidefinite program is Lipschitz-stable with respect to perturbations of the observed entries, unlike more basic algorithms such as nonlinear propagation or ridge regression. Our proof is based on recursively building a certificate of optimality corresponding to a dual sum-of-squares (SOS) polynomial. This SOS polynomial is built from the polynomial ideal generated by the completion constraints and the monomials provided by the minimization of the trace. The proposed relaxation fits in the framework of the Lasserre hierarchy, albeit with the key addition of the trace objective function. We further show how to represent and manipulate the moment tensor in favorable complexity by means of a hierarchical low-rank decomposition.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.