Mathematics > Combinatorics
[Submitted on 12 Feb 2018 (v1), last revised 24 Feb 2018 (this version, v2)]
Title:Steinberg's theorem for crystallographic complex reflection groups
View PDFAbstract:Popov classified crystallographic complex reflection groups by determining lattices they stabilize. These analogs of affine Weyl groups have infinite order and are generated by reflections about affine hyperplanes; most arise as the semi-direct product of a finite complex reflection group and a full rank lattice. Steinberg's fixed point theorem asserts that the regular orbits under the action of a reflection group are exactly the orbits lying off of reflecting hyperplanes. This theorem holds for finite reflection groups (real or complex) and also affine Weyl groups but fails for some crystallographic complex reflection groups. We determine when Steinberg's theorem holds for the infinite family of crystallographic complex reflection groups. We include crystallographic groups built on finite Coxeter groups.
Submission history
From: Anne V. Shepler [view email][v1] Mon, 12 Feb 2018 01:15:25 UTC (580 KB)
[v2] Sat, 24 Feb 2018 16:28:29 UTC (580 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.