Mathematics > Algebraic Topology
[Submitted on 12 Feb 2018 (v1), last revised 5 Dec 2018 (this version, v3)]
Title:Algebraic Intersection Spaces
View PDFAbstract:We define a variant of intersection space theory that applies to many compact complex and real analytic spaces $X$, including all complex projective varieties; this is a significant extension to a theory which has so far only been shown to apply to a particular subclass of spaces with smooth singular sets. We verify existence of these so-called algebraic intersection spaces and show that they are the (reduced) chain complexes of known topological intersection spaces in the case that both exist. We next analyze "local duality obstructions", which we can choose to vanish, and verify that algebraic intersection spaces satisfy duality in the absence of these obstructions. We conclude by defining an untwisted algebraic intersection space pairing, whose signature is equal to the Novikov signature of the complement in $X$ of a tubular neighborhood of the singular set.
Submission history
From: Christian Geske [view email][v1] Mon, 12 Feb 2018 03:25:55 UTC (20 KB)
[v2] Wed, 27 Jun 2018 19:52:16 UTC (22 KB)
[v3] Wed, 5 Dec 2018 00:50:58 UTC (28 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.