Mathematics > Statistics Theory
[Submitted on 28 Feb 2018]
Title:Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean
View PDFAbstract:Median absolute deviation (hereafter MAD) is known as a robust alternative to the ordinary variance. It has been widely utilized to induce robust statistical inferential procedures. In this paper, we investigate the strong and weak Bahadur representations of its bootstrap counterpart. As a useful application, we utilize the results to derive the weak Bahadur representation of the bootstrap sample projection depth weighted mean---a quite important location estimator depending on MAD.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.