Mathematics > Numerical Analysis
[Submitted on 27 Feb 2018]
Title:A two-stage ensemble Kalman filter based on multiscale model reduction for inverse problems in time fractional diffusion-wave equations
View PDFAbstract:Ensemble Kalman filter (EnKF) has been widely used in state estimation and parameter estimation for the dynamic system where observational data is obtained sequentially in time.
To reduce uncertainty and accelerate posterior inference, a two-stage ensemble Kalman filter is presented to improve the sequential analysis of EnKF. It is known that the final posterior ensemble may be concentrated in a small portion of the entire support of the initial prior ensemble. It will be much more efficient if we first build a new prior by some partial observations, and construct a surrogate only over the significant region of the new prior. To this end, we construct a very coarse model using generalized multiscale finite element method (GMsFEM) and generate a new prior ensemble in the first stage. GMsFEM provides a set of hierarchical multiscale basis functions supported in coarse blocks. This gives flexibility and adaptivity to choosing degree of freedoms to construct a reduce model. In the second stage, we build an initial surrogate model based on the new prior by using GMsFEM and sparse generalized polynomial chaos (gPC)-based stochastic collocation methods. To improve the initial surrogate model, we dynamically update the surrogate model, which is adapted to the sequential availability of data and the updated analysis. The two-stage EnKF can achieve a better estimation than standard EnKF, and significantly improve the efficiency to update the ensemble analysis (posterior exploration). To enhance the applicability and flexibility in Bayesian inverse problems, we extend the two-stage EnKF to non-Gaussian models and hierarchical models. In the paper, we focus on the time fractional diffusion-wave models in porous media and investigate their Bayesian inverse problems using the proposed two-stage EnKF.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.