High Energy Physics - Theory
[Submitted on 6 Mar 2018 (v1), last revised 23 Mar 2018 (this version, v2)]
Title:Infinitely Many M2-instanton Corrections to M-theory on $G_2$-manifolds
View PDFAbstract:We consider the non-perturbative superpotential for a class of four-dimensional $\mathcal N=1$ vacua obtained from M-theory on seven-manifolds with holonomy $G_2$. The class of $G_2$-holonomy manifolds we consider are so-called twisted connected sum (TCS) constructions, which have the topology of a K3-fibration over $S^3$. We show that the non-perturbative superpotential of M-theory on a class of TCS geometries receives infinitely many inequivalent M2-instanton contributions from infinitely many three-spheres, which we conjecture are supersymmetric (and thus associative) cycles. The rationale for our construction is provided by the duality chain of arXiv:1708.07215, which relates M-theory on TCS $G_2$-manifolds to $E_8\times E_8$ heterotic backgrounds on the Schoen Calabi-Yau threefold, as well as to F-theory on a K3-fibered Calabi-Yau fourfold. The latter are known to have an infinite number of instanton corrections to the superpotential and it is these contributions that we trace through the duality chain back to the $G_2$-compactification.
Submission history
From: Andreas P. Braun [view email][v1] Tue, 6 Mar 2018 18:56:51 UTC (298 KB)
[v2] Fri, 23 Mar 2018 13:36:20 UTC (292 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.