Computer Science > Neural and Evolutionary Computing
[Submitted on 7 Mar 2018 (v1), last revised 12 Mar 2018 (this version, v2)]
Title:Neural network feedback controller for inertial platform
View PDFAbstract:The paper describes an algorithm for the synthesis of neural networks to control gyro stabilizer. The neural network performs the role of observer for state vector. The role of an observer in a feedback of gyro stabilizer is illustrated. Paper detail a problem specific features stage of classics algorithm: choosing of network architecture, learning of neural network and verification of result feedback control. In the article presented optimal configuration of the neural network like a memory depth, the number of layers and neuron in these layers and activation functions in layers. Using the information of dynamic system for improving learning of neural network is provided. A scheme creation of an optimal training sample is provided.
Submission history
From: Yan Anisimov [view email][v1] Wed, 7 Mar 2018 16:08:11 UTC (91 KB)
[v2] Mon, 12 Mar 2018 14:11:05 UTC (91 KB)
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.