Quantitative Biology > Populations and Evolution
[Submitted on 7 Mar 2018]
Title:Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods
View PDFAbstract:With advances in sequencing technologies, there are now massive amounts of genomic data from across all life, leading to the possibility that a robust Tree of Life can be constructed. However, "gene tree heterogeneity", which is when different genomic regions can evolve differently, is a common phenomenon in multi-locus datasets, and reduces the accuracy of standard methods for species tree estimation that do not take this heterogeneity into account. New methods have been developed for species tree estimation that specifically address gene tree heterogeneity, and that have been proven to converge to the true species tree when the number of loci and number of sites per locus both increase (i.e., the methods are said to be "statistically consistent"). Yet, little is known about the biologically realistic condition where the number of sites per locus is bounded. We show that when the sequence length of each locus is bounded (by any arbitrarily chosen value), the most common approaches to species tree estimation that take heterogeneity into account (i.e., traditional fully partitioned concatenated maximum likelihood and newer approaches, called summary methods, that estimate the species tree by combining gene trees) are not statistically consistent, even when the heterogeneity is extremely constrained. The main challenge is the presence of conditions such as long branch attraction that create biased tree estimation when the number of sites is restricted. Hence, our study uncovers a fundamental challenge to species tree estimation using both traditional and new methods.
Current browse context:
q-bio.PE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.