Computer Science > Artificial Intelligence
[Submitted on 5 Mar 2018 (v1), last revised 31 Jul 2018 (this version, v4)]
Title:Synthesis in pMDPs: A Tale of 1001 Parameters
View PDFAbstract:This paper considers parametric Markov decision processes (pMDPs) whose transitions are equipped with affine functions over a finite set of parameters. The synthesis problem is to find a parameter valuation such that the instantiated pMDP satisfies a specification under all strategies. We show that this problem can be formulated as a quadratically-constrained quadratic program (QCQP) and is non-convex in general. To deal with the NP-hardness of such problems, we exploit a convex-concave procedure (CCP) to iteratively obtain local optima. An appropriate interplay between CCP solvers and probabilistic model checkers creates a procedure --- realized in the open-source tool PROPhESY --- that solves the synthesis problem for models with thousands of parameters.
Submission history
From: Nils Jansen [view email][v1] Mon, 5 Mar 2018 20:55:33 UTC (64 KB)
[v2] Sun, 15 Apr 2018 15:28:09 UTC (636 KB)
[v3] Mon, 14 May 2018 19:58:54 UTC (194 KB)
[v4] Tue, 31 Jul 2018 10:25:55 UTC (94 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.