Mathematics > Numerical Analysis
[Submitted on 12 Mar 2018 (v1), last revised 16 Jan 2020 (this version, v3)]
Title:Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise
View PDFAbstract:Motivated by fractional derivative models in viscoelasticity, a class of semilinear stochastic Volterra integro-differential equations, and their deterministic counterparts, are considered. A generalized exponential Euler method, named here as the Mittag-Leffler Euler integrator, is used for the temporal discretization, while the spatial discretization is performed by the spectral Galerkin method. The temporal rate of strong convergence is found to be (almost) twice compared to when the backward Euler method is used together with a convolution quadrature for time discretization. Numerical experiments that validate the theory are presented.
Submission history
From: Fardin Saedpanah [view email][v1] Mon, 12 Mar 2018 08:32:27 UTC (49 KB)
[v2] Tue, 7 May 2019 11:15:57 UTC (41 KB)
[v3] Thu, 16 Jan 2020 09:25:16 UTC (41 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.