Mathematics > Optimization and Control
[Submitted on 12 Mar 2018]
Title:Hybrid interconnection of iterative bidding and power network dynamics for frequency regulation and optimal dispatch
View PDFAbstract:This paper considers a real-time electricity market involving an independent system operator (ISO) and a group of strategic generators. The ISO operates a market where generators bid prices at which there are willing to provide power. The ISO makes power generation assignments with the goal of solving the economic dispatch problem and regulating the network frequency. We propose a multi-rate hybrid algorithm for bidding and market clearing that combines the discrete nature of iterative bidding with the continuous nature of the frequency evolution in the power network. We establish sufficient upper bounds on the inter-event times that guarantee that the proposed algorithm asymptotically converges to an equilibrium corresponding to an efficient Nash equilibrium and zero frequency deviation. Our technical analysis builds on the characterization of the robustness properties of the continuous-time version of the bidding update process interconnected with the power network dynamics via the identification of a novel LISS-Lyapunov function. Simulations on the IEEE 14-bus system illustrate our results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.