Mathematics > Optimization and Control
[Submitted on 14 Mar 2018 (v1), last revised 19 Jul 2018 (this version, v2)]
Title:Damped Newton's Method on Riemannian Manifolds
View PDFAbstract:A damped Newton's method to find a singularity of a vector field in Riemannian setting is presented with global convergence study. It is ensured that the sequence generated by the proposed method reduces to a sequence generated by the Riemannian version of the classical Newton's method after a finite number of iterations, consequently its convergence rate is superlinear/quadratic. Moreover, numerical experiments illustrate that the damped Newton's method has better performance than Newton's method in number of iteration and computational time.
Submission history
From: Teles Fernandes [view email][v1] Wed, 14 Mar 2018 03:54:39 UTC (40 KB)
[v2] Thu, 19 Jul 2018 14:26:41 UTC (40 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.