Mathematics > Symplectic Geometry
[Submitted on 15 Mar 2018 (v1), last revised 24 Jun 2019 (this version, v3)]
Title:A Chekanov-Eliashberg algebra for Legendrian graphs
View PDFAbstract:We define a differential graded algebra for Legendrian graphs and tangles in the standard contact Euclidean three space. This invariant is defined combinatorially by using ideas from Legendrian contact homology. The construction is distinguished from other versions of Legendrian contact algebra by the vertices of Legendrian graphs. A set of countably many generators and a generalized notion of equivalence are introduced for invariance. We show a van Kampen type theorem for the differential graded algebras under the tangle replacement. Our construction recovers many known algebraic constructions of Legendrian links via suitable operations at the vertices.
Submission history
From: Byung Hee An [view email][v1] Thu, 15 Mar 2018 13:04:51 UTC (164 KB)
[v2] Sun, 16 Sep 2018 16:17:37 UTC (217 KB)
[v3] Mon, 24 Jun 2019 11:27:50 UTC (240 KB)
Current browse context:
math.SG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.