Mathematics > Optimization and Control
[Submitted on 14 Mar 2018 (v1), last revised 7 Sep 2018 (this version, v2)]
Title:Restarting the accelerated coordinate descent method with a rough strong convexity estimate
View PDFAbstract:We propose new restarting strategies for the accelerated coordinate descent method. Our main contribution is to show that for a well chosen sequence of restarting times, the restarted method has a nearly geometric rate of convergence. A major feature of the method is that it can take profit of the local quadratic error bound of the objective function without knowing the actual value of the error bound. We also show that under the more restrictive assumption that the objective function is strongly convex, any fixed restart period leads to a geometric rate of convergence. Finally, we illustrate the properties of the algorithm on a regularized logistic regression problem and on a Lasso problem.
Submission history
From: Olivier Fercoq [view email][v1] Wed, 14 Mar 2018 15:39:47 UTC (132 KB)
[v2] Fri, 7 Sep 2018 13:43:25 UTC (148 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.