Mathematics > Probability
[Submitted on 16 Mar 2018]
Title:Local weak convergence for PageRank
View PDFAbstract:PageRank is a well-known algorithm for measuring centrality in networks. It was originally proposed by Google for ranking pages in the World-Wide Web. One of the intriguing empirical properties of PageRank is the so-called `power-law hypothesis': in a scale-free network the PageRank scores follow a power law with the same exponent as the (in-)degrees. Up to date, this hypothesis has been confirmed empirically and in several specific random graphs models. In contrast, this paper does not focus on one random graph model but investigates the existence of an asymptotic PageRank distribution, when the graph size goes to infinity, using local weak convergence. This may help to identify general network structures in which the power-law hypothesis holds. We start from the definition of local weak convergence for sequences of (random) undirected graphs, and extend this notion to directed graphs. To this end, we define an exploration process in the directed setting that keeps track of in- and out-degrees of vertices. Then we use this to prove the existence of an asymptotic PageRank distribution. As a result, the limiting distribution of PageRank can be computed directly as a function of the limiting object. We apply our results to the directed configuration model and continuous-time branching processes trees, as well as preferential attachment models.
Submission history
From: Alessandro Garavaglia [view email][v1] Fri, 16 Mar 2018 10:24:55 UTC (451 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.