Mathematics > Optimization and Control
[Submitted on 20 Mar 2018 (v1), last revised 27 Jun 2021 (this version, v2)]
Title:Decentralized decision making for networks of uncertain systems
View PDFAbstract:Distributed model predictive control (MPC) has been proven a successful method in regulating the operation of large-scale networks of constrained dynamical systems. This paper is concerned with cooperative distributed MPC in which the decision actions of the systems are usually derived by the solution of a system-wide optimization problem. However, formulating and solving such large-scale optimization problems is often a hard task which requires extensive information communication among the individual systems and fails to address privacy concerns in the network. Hence, the main challenge is to design decision policies with a prescribed structure so that the resulting system-wide optimization problem to admit a loosely coupled structure and be amendable to distributed computation algorithms. In this paper, we propose a decentralized problem synthesis scheme which only requires each system to communicate sets which bound its states evolution to neighboring systems. The proposed method alleviates concerns on privacy since this limited communication scheme does not reveal the exact characteristics of the dynamics within each system. In addition, it enables a distributed computation of the solution, making our method highly scalable. We demonstrate in a number of numerical studies, inspired by engineering and finance, the efficacy of the proposed approach which leads to solutions that closely approximate those obtained by the centralized formulation only at a fraction of the computational effort.
Submission history
From: Georgios Darivianakis [view email][v1] Tue, 20 Mar 2018 21:15:31 UTC (1,289 KB)
[v2] Sun, 27 Jun 2021 11:50:00 UTC (1,297 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.