Mathematics > Probability
[Submitted on 20 Mar 2018]
Title:Join-Idle-Queue with Service Elasticity: Large-Scale Asymptotics of a Non-monotone System
View PDFAbstract:We consider the model of a token-based joint auto-scaling and load balancing strategy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden (SIGMETRICS '17, arXiv:1703.08373), which offers an efficient scalable implementation and yet achieves asymptotically optimal steady-state delay performance and energy consumption as the number of servers $N\to\infty$. In the above work, the asymptotic results are obtained under the assumption that the queues have fixed-size finite buffers, and therefore the fundamental question of stability of the proposed scheme with infinite buffers was left open. In this paper, we address this fundamental stability question. The system stability under the usual subcritical load assumption is not automatic. Moreover, the stability may not even hold for all $N$. The key challenge stems from the fact that the process lacks monotonicity, which has been the powerful primary tool for establishing stability in load balancing models. We develop a novel method to prove that the subcritically loaded system is stable for large enough $N$, and establish convergence of steady-state distributions to the optimal one, as $N \to \infty$. The method goes beyond the state of the art techniques -- it uses an induction-based idea and a "weak monotonicity" property of the model; this technique is of independent interest and may have broader applicability.
Submission history
From: Debankur Mukherjee [view email][v1] Tue, 20 Mar 2018 23:24:57 UTC (126 KB)
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.