Mathematics > Optimization and Control
[Submitted on 21 Mar 2018 (v1), last revised 22 Aug 2018 (this version, v2)]
Title:Primal-Dual Algorithm for Distributed Reinforcement Learning: Distributed GTD
View PDFAbstract:The goal of this paper is to study a distributed version of the gradient temporal-difference (GTD) learning algorithm for multi-agent Markov decision processes (MDPs). The temporal difference (TD) learning is a reinforcement learning (RL) algorithm which learns an infinite horizon discounted cost function (or value function) for a given fixed policy without the model knowledge. In the distributed RL case each agent receives local reward through a local processing. Information exchange over sparse communication network allows the agents to learn the global value function corresponding to a global reward, which is a sum of local rewards. In this paper, the problem is converted into a constrained convex optimization problem with a consensus constraint. Then, we propose a primal-dual distributed GTD algorithm and prove that it almost surely converges to a set of stationary points of the optimization problem.
Submission history
From: Donghwan Lee [view email][v1] Wed, 21 Mar 2018 17:46:45 UTC (460 KB)
[v2] Wed, 22 Aug 2018 13:03:18 UTC (573 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.