Mathematics > Algebraic Geometry
[Submitted on 24 Mar 2018 (v1), last revised 31 Mar 2018 (this version, v2)]
Title:On the birational geometry of spaces of complete forms I: collineations and quadrics
View PDFAbstract:Moduli spaces of complete collineations are wonderful compactifications of spaces of linear maps of maximal rank between two fixed vector spaces. We investigate the birational geometry of moduli spaces of complete collineations and quadrics from the point of view of Mori theory. We compute their effective, nef and movable cones, the generators of their Cox rings, and their groups of pseudo-automorphisms. Furthermore, we give a complete description of both the Mori chamber and stable base locus decompositions of the effective cone of the space of complete collineations of the 3-dimensional projective space.
Submission history
From: Alex Massarenti [view email][v1] Sat, 24 Mar 2018 20:47:47 UTC (43 KB)
[v2] Sat, 31 Mar 2018 14:15:05 UTC (44 KB)
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.