Computer Science > Information Theory
[Submitted on 25 Mar 2018 (v1), last revised 7 Apr 2018 (this version, v2)]
Title:Optimal Spectrum Sensing Policy with Traffic Classification in RF-Powered CRNs
View PDFAbstract:An orthogonal frequency division multiple access (OFDMA)-based primary user (PU) network is considered, which provides different spectral access/energy harvesting opportunities in RF-powered cognitive radio networks (CRNs). In this scenario, we propose an optimal spectrum sensing policy for opportunistic spectrum access/energy harvesting under both the PU collision and energy causality constraints. PU subchannels can have different traffic patterns and exhibit distinct idle/busy frequencies, due to which the spectral access/energy harvesting opportunities are application specific. Secondary user (SU) collects traffic pattern information through observation of the PU subchannels and classifies the idle/busy period statistics for each subchannel. Based on the statistics, we invoke stochastic models for evaluating SU capacity by which the energy detection threshold for spectrum sensing can be adjusted with higher sensing accuracy. To this end, we employ the Markov decision process (MDP) model obtained by quantizing the amount of SU battery and the duty cycle model obtained by the ratio of average harvested energy and energy consumption rates. We demonstrate the effectiveness of the proposed stochastic models through comparison with the optimal one obtained from an exhaustive method.
Submission history
From: Dong In Kim [view email][v1] Sun, 25 Mar 2018 02:19:17 UTC (1,886 KB)
[v2] Sat, 7 Apr 2018 03:49:17 UTC (1,886 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.