Mathematics > Analysis of PDEs
[Submitted on 2 Apr 2018]
Title:Elliptic problems in the sense of Lawruk with boundary operators of higher orders in refined Sobolev scale
View PDFAbstract:In a refined Sobolev scale, we investigate an elliptic boundary-value problem with additional unknown functions in boundary conditions for which the maximum of orders of boundary operators is grater than or equal to the order of the elliptic equation. This scale consists of inner product Hörmander spaces whose order of regularity is given by a real number and a function varying slowly at infinity in the sense of Karamata. We prove a theorem on the Fredholm property of a bounded operator corresponding to this problem in the refined Sobolev scale. For the generalized solutions to the problem, we establish a local a priory estimate and prove a theorem about their regularity in Hörmander spaces. We find sufficient conditions under which given generalized derivatives of the solutions are continuous.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.