Mathematics > Analysis of PDEs
[Submitted on 5 Apr 2018]
Title:Multiscale Galerkin approximation scheme for a system of quasilinear parabolic equations
View PDFAbstract:We discuss a multiscale Galerkin approximation scheme for a system of coupled quasilinear parabolic equations. These equations arise from the upscaling of a pore scale filtration combustion model under the assumptions of large Damkhöler number and small Péclet number. The upscaled model consists of a heat diffusion equation and a mass diffusion equation in the bulk of a macroscopic domain. The associated diffusion tensors are bivariate functions of temperature and concentration and provide the necessary coupling conditions to elliptic-type cell problems. These cell problems are characterized by a reaction-diffusion phenomenon with nonlinear reactions of Arrhenius type at a gas-solid interface. We discuss the wellposedness of the quasilinear system and establish uniform estimates for the finite dimensional approximations. Based on these estimates, the convergence of the approximating sequence is proved. The results of numerical simulations demonstrate, in suitable temperature regimes, the potential of solutions of the upscaled model to mimic those from porous media combustion. Moreover, distinctions are made between the effects of the microscopic reaction-diffusion processes on the macroscopic system of equations and a purely diffusion system.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.