Mathematics > Analysis of PDEs
[Submitted on 5 Apr 2018 (v1), last revised 17 Sep 2021 (this version, v3)]
Title:Multiple front standing waves in the FitzHugh-Nagumo equations
View PDFAbstract:There have been several existence results for the standing waves of FitzHugh-Nagumo equations. Such waves are the connecting orbits of an autonomous second-order Lagrangian system and the corresponding kinetic energy is an indefinite quadratic form in the velocity terms. When the system has two stable hyperbolic equilibria, there exist two stable standing fronts, which will be used in this paper as building blocks, to construct stable standing waves with multiple fronts in case the equilibria are of saddle-focus type. The idea to prove existence is somewhat close in spirit to [Buffoni-Sere, CPAM 49, 285-305]. However several differences are required in the argument: facing a strongly indefinite functional, we need to perform a nonlo-cal Lyapunov-Schmidt reduction; in order to justify the stability of multiple front standing waves, we rely on a more precise variational characterization of such critical points. Based on this approach, both stable and unstable standing waves are established.
Submission history
From: Eric Sere [view email] [via CCSD proxy][v1] Thu, 5 Apr 2018 08:26:44 UTC (29 KB)
[v2] Tue, 23 Apr 2019 13:13:13 UTC (44 KB)
[v3] Fri, 17 Sep 2021 10:00:49 UTC (36 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.