Mathematics > Differential Geometry
[Submitted on 7 Apr 2018]
Title:An invitation to multisymplectic geometry
View PDFAbstract:In this article we study multisymplectic geometry, i.e., the geometry of manifolds with a non-degenerate, closed differential form. First we describe the transition from Lagrangian to Hamiltonian classical field theories, and then we reformulate the latter in multisymplectic terms. Furthermore, we investigate basic questions on normal forms of multisymplectic manifolds, notably the questions wether and when Darboux-type theorems hold, and how many diffeomorphisms certain, important classes of multisymplectic manifolds possess. Finally, we survey recent advances in the area of symmetries and conserved quantities on multisymplectic manifolds.
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.