Mathematics > Statistics Theory
[Submitted on 8 Apr 2018 (v1), last revised 10 May 2022 (this version, v4)]
Title:Moving Beyond Sub-Gaussianity in High-Dimensional Statistics: Applications in Covariance Estimation and Linear Regression
View PDFAbstract:Concentration inequalities form an essential toolkit in the study of high dimensional (HD) statistical methods. Most of the relevant statistics literature in this regard is based on sub-Gaussian or sub-exponential tail assumptions. In this paper, we first bring together various probabilistic inequalities for sums of independent random variables under much more general exponential type (namely sub-Weibull) tail assumptions. These results extract a part sub-Gaussian tail behavior in finite samples, matching the asymptotics governed by the central limit theorem, and are compactly represented in terms of a new Orlicz quasi-norm - the Generalized Bernstein-Orlicz norm - that typifies such tail behaviors.
We illustrate the usefulness of these inequalities through the analysis of four fundamental problems in HD statistics. In the first two problems, we study the rate of convergence of the sample covariance matrix in terms of the maximum elementwise norm and the maximum k-sub-matrix operator norm which are key quantities of interest in bootstrap, HD covariance matrix estimation and HD inference. The third example concerns the restricted eigenvalue condition, required in HD linear regression, which we verify for all sub-Weibull random vectors through a unified analysis, and also prove a more general result related to restricted strong convexity in the process. In the final example, we consider the Lasso estimator for linear regression and establish its rate of convergence under much weaker than usual tail assumptions (on the errors as well as the covariates), while also allowing for misspecified models and both fixed and random design. To our knowledge, these are the first such results for Lasso obtained in this generality. The common feature in all our results over all the examples is that the convergence rates under most exponential tails match the usual ones under sub-Gaussian assumptions.
Submission history
From: Abhishek Chakrabortty [view email][v1] Sun, 8 Apr 2018 00:27:45 UTC (73 KB)
[v2] Fri, 29 Jun 2018 01:40:10 UTC (73 KB)
[v3] Wed, 5 Aug 2020 20:56:42 UTC (82 KB)
[v4] Tue, 10 May 2022 02:27:31 UTC (89 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.