Mathematics > Dynamical Systems
[Submitted on 9 Apr 2018 (v1), last revised 31 Oct 2018 (this version, v2)]
Title:Periodic oscillators, isochronous centers and resonance
View PDFAbstract:An oscillator is called isochronous if all motions have a common period. When the system is forced by a time-dependent perturbation with the same period the dynamics may change and the phenomenon of resonance can appear. In this context, resonance means that all solutions are unbounded. The theory of resonance is well known for the harmonic oscillator and we extend it to nonlinear isochronous oscillators.
Submission history
From: David Rojas [view email][v1] Mon, 9 Apr 2018 17:48:30 UTC (31 KB)
[v2] Wed, 31 Oct 2018 06:54:54 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.