Mathematics > Analysis of PDEs
[Submitted on 11 Apr 2018 (v1), last revised 4 May 2018 (this version, v2)]
Title:A pocket guide to nonlinear differential equations in the Musielak--Orlicz spaces
View PDFAbstract:The Musielak--Orlicz setting unifies the variable exponent, Orlicz, weighted Sobolev, and double-phase spaces. They inherit technical difficulties resulting from general growth and inhomogeneity. In this survey we present an overview of developments of the theory of existence of~PDEs in the setting including reflexive and non-reflexive cases, as well as isotropic and anisotropic ones. Particular attention is paid to problems with data below natural duality in absence of Lavrentiev's phenomenon.
Submission history
From: Iwona Chlebicka [view email][v1] Wed, 11 Apr 2018 20:02:59 UTC (32 KB)
[v2] Fri, 4 May 2018 22:46:14 UTC (36 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.