Mathematics > Analysis of PDEs
[Submitted on 12 Apr 2018]
Title:Well-posedness of the hydrostatic Navier-Stokes equations
View PDFAbstract:We address the local well-posedness of the hydrostatic Navier-Stokes equations. These equations, sometimes called reduced Navier-Stokes/Prandtl, appear as a formal limit of the Navier-Stokes system in thin domains, under certain constraints on the aspect ratio and the Reynolds number. It is known that without any structural assumption on the initial data, real-analyticity is both necessary and sufficient for the local well-posedness of the system. In this paper we prove that for convex initial data, local well-posedness holds under simple Gevrey regularity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.