Mathematics > Analysis of PDEs
[Submitted on 13 Apr 2018 (v1), last revised 2 Nov 2018 (this version, v2)]
Title:Stability of peakons for the generalized modified Camassa-Holm equation
View PDFAbstract:In this paper, we study orbital stability of peakons for the generalized modified Camassa-Holm (gmCH) equation, which is a natural higher-order generalization of the modified Camassa-Holm (mCH) equation, and admits Hamiltonian form and single peakons. We first show that the single peakon is the usual weak solution of the PDEs. Some sign invariant properties and conserved densities are presented. Next, by constructing the corresponding auxiliary function $h(t,\,x)$ and establishing a delicate polynomial inequality relating to the two conserved densities with the maximal value of approximate solutions, the orbital stability of single peakon of the gmCH equation is verified. We introduce a new approach to prove the key inequality, which is different from that used for the mCH equation. This extends the result on the stability of peakons for the mCH equation (Comm. Math. Phys., 322:967-997, 2013) successfully to the higher-order case, and is helpful to understand how higher-order nonlinearities affect the dispersion dynamics.
Submission history
From: Xingxing Liu [view email][v1] Fri, 13 Apr 2018 11:04:48 UTC (18 KB)
[v2] Fri, 2 Nov 2018 05:36:52 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.