Mathematical Physics
[Submitted on 13 Apr 2018 (v1), last revised 28 Feb 2019 (this version, v2)]
Title:Stable cosmological Kaluza-Klein Spacetimes
View PDFAbstract:We consider the Einstein flow on a product manifold with one factor being a compact quotient of 3-dimensional hyperbolic space without boundary and the other factor being a flat torus of fixed arbitrary dimension. We consider initial data symmetric with respect to the toroidal directions. We obtain effective Einsteinian field equations coupled to a wave map type and a Maxwell type equation by the Kaluza-Klein reduction. The Milne universe solves those field equations when the additional parts arising from the toroidal dimensions are chosen constant. We prove future stability of the Milne universe within this class of spacetimes, which establishes stability of a large class of cosmological Kaluza-Klein vacua. A crucial part of the proof is the implementation of a new gauge for Maxwell-type equations in the cosmological context, which we refer to as slice-adapted gauge.
Submission history
From: Volker Branding [view email][v1] Fri, 13 Apr 2018 13:35:21 UTC (30 KB)
[v2] Thu, 28 Feb 2019 16:22:07 UTC (31 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.