Mathematics > Numerical Analysis
[Submitted on 13 Apr 2018]
Title:Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-rank Matrix Approximations
View PDFAbstract:Factorizing large matrices by QR with column pivoting (QRCP) is substantially more expensive than QR without pivoting, owing to communication costs required for pivoting decisions. In contrast, randomized QRCP (RQRCP) algorithms have proven themselves empirically to be highly competitive with high-performance implementations of QR in processing time, on uniprocessor and shared memory machines, and as reliable as QRCP in pivot quality.
We show that RQRCP algorithms can be as reliable as QRCP with failure probabilities exponentially decaying in oversampling size. We also analyze efficiency differences among different RQRCP algorithms. More importantly, we develop distributed memory implementations of RQRCP that are significantly better than QRCP implementations in ScaLAPACK.
As a further development, we introduce the concept of and develop algorithms for computing spectrum-revealing QR factorizations for low-rank matrix approximations, and demonstrate their effectiveness against leading low-rank approximation methods in both theoretical and numerical reliability and efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.