Mathematics > Analysis of PDEs
[Submitted on 15 Apr 2018]
Title:A maximal regularity approach to the study of motion of a rigid body with a fluid-filled cavity
View PDFAbstract:We consider the inertial motion of a rigid body with an interior cavity that is completely filled with a viscous incompressible fluid. The equilibria of the system are characterized and their stability properties are analyzed. It is shown that equilibria associated with the largest moment of inertia are normally stable, while all other equilibria are normally hyperbolic. We show that every Leray-Hopf weak solution converges to an equilibrium at an exponential rate. In addition, we determine the critical spaces for the governing evolution equation, and we demonstrate how parabolic regularization in time-weighted spaces affords great flexibility in establishing regularity of solutions and their convergence to equilibria.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.