Mathematics > Operator Algebras
[Submitted on 20 Apr 2018 (v1), last revised 11 Dec 2018 (this version, v5)]
Title:The Dyson equation with linear self-energy: spectral bands, edges and cusps
View PDFAbstract:We study the unique solution $m$ of the Dyson equation \[ -m(z)^{-1} = z - a + S[m(z)] \] on a von Neumann algebra $\mathcal{A}$ with the constraint $\mathrm{Im}\,m\geq 0$. Here, $z$ lies in the complex upper half-plane, $a$ is a self-adjoint element of $\mathcal{A}$ and $S$ is a positivity-preserving linear operator on $\mathcal{A}$. We show that $m$ is the Stieltjes transform of a compactly supported $\mathcal{A}$-valued measure on $\mathbb{R}$. Under suitable assumptions, we establish that this measure has a uniformly $1/3$-Hölder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of $m$ near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [arXiv:1804.07744] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [arXiv:1809.03971,arXiv:1811.04055]. We also extend the finite dimensional band mass formula from [arXiv:1804.07744] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases.
Submission history
From: Johannes Alt [view email][v1] Fri, 20 Apr 2018 17:54:30 UTC (118 KB)
[v2] Mon, 30 Apr 2018 14:45:06 UTC (120 KB)
[v3] Wed, 30 May 2018 11:36:55 UTC (118 KB)
[v4] Tue, 11 Sep 2018 15:34:58 UTC (135 KB)
[v5] Tue, 11 Dec 2018 13:56:02 UTC (137 KB)
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.